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SUMMARY This paper presents a model-based study of SET (Single-
Electron-Transistor) logic gate family for synthesizing binary, MV
(Multiple-Valued) and mixed-mode logic circuits. The use of SETs com-
bined with MOS transistors allows compact realization of basic logic func-
tions that exhibit periodic transfer characteristics. The operation of basic
SET logic gates is successfully confirmed through SPICE circuit simula-
tion based on the physical device model of SETs. The proposed SET logic
gates are useful for implementing binary logic circuits, MV logic circuits
and binary-MV mixed-mode logic circuits in a highly flexible manner. As
an example, this paper describes design of various parallel counters for
carry-propagation-free arithmetic, where MV signals are effectively used
to achieve higher functionality with lower hardware complexity.
key words: single-electron transistors, multiple-valued logic, quantum de-
vices, logic circuits, parallel counters

1. Introduction

Advances in integrated circuit technology have been based
mostly on CMOS circuit technology operating on the ba-
sis of binary logic. However, major problems in present-
day LSI technology, such as increased power consump-
tion, interconnect delay, limited integration density and de-
vice scaling limits, cannot be addressed simply by improv-
ing the conventional CMOS technology. An advanced de-
vice/circuit technology that achieves higher functionality
with fewer hardware components will be desirable in the
next-generation low-power System-on-Chip (SoC) architec-
ture.

Emerging single-electron devices, especially Single-
Electron Transistors (SETs) [1], [2], have a possibility of
achieving high functional density and extremely low power
operation in principle. For practical applications, how-
ever, we must make clear what kinds of new functional-
ity could be supported by SETs and how the emerging
functionality will be applied to useful computation. As
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a first step to address these questions, in this paper, we
present a model-based analysis of possible SET logic gates
and their potential functionality in synthesizing binary, MV
(Multiple-Valued) and mixed-mode logic circuits. The op-
eration of basic SET logic gates is successfully confirmed
through SPICE circuit simulation based on the physical de-
vice model of SETs [3].

The use of SETs combined with MOS transistors [4],
[5] allows compact realization of basic logic functions that
exhibit periodic transfer characteristics, whose amplitude,
period and phase can be programmed independently. This
unique property is particularly useful for implementing bi-
nary logic circuits, MV logic circuits and binary-MV mixed-
mode logic circuits. On the basis of this idea, we also dis-
cuss application of the proposed SET logic gates to the im-
plementation of carry-propagation-free arithmetic circuits.
We demonstrate that the use of SETs makes possible ex-
tremely compact realization of parallel counter (or adder)
circuits required for high-speed arithmetic.

2. Basic Logic Gates Using SETs

2.1 Mathematical Notation

We first define the basic mathematical notation of logic op-
erators used in the following discussion. Let Lr be the
set of logic values in r-valued logic, which is defined as
Lr = {0, 1, · · · , r − 1} (r ≥ 2). As a special case, binary logic
assumes the logic value set L2 = {0, 1}. We use binary-logic
operators ∧ (AND), ∨ (OR), ⊕ (EXOR) and ¯ (NOT), which
are defined on L2.

In order to discuss the realization of r-valued logic
function, we need to define linear summation + on Lr, where
the logic values 0, 1, · · · , r − 1 are regarded as integer num-
bers. Also, we define literal operator xS over the r-valued
variable x(∈ Lr) as

xS =

{
1 if x ∈ S
0 otherwise,

where S ⊆ Lr. Note that the literal operator is a mapping
Lr → L2.

2.2 SET Logic Gates

The SET is the most fundamental of various single-electron
devices. The SET must have a small conductive island to
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Fig. 1 SET periodic literal circuit: (a) schematic, (b) transfer character-
istics when Vctl = 0 [V] and when (c) Vctl =

e
2Cc

[V].

exploit the Coulomb blockade for manipulating electrons by
means of one-by-one transfer.

Figure 1(a) shows a schematic of a periodic literal cir-
cuit, which consists of a SET, a MOSFET and a Constant-
Current (CC) load Io. The SET has an input gate and a
control gate that controls the phase of periodic waveform
of drain current. The MOSFET with a fixed gate bias of
Vgg is used to keep the SET drain voltage almost constant at
Vgg − Vth, where Vth is the MOSFET threshold voltage. The
Vgg −Vth is set low enough to sustain the Coulomb blockade
condition. In addition, the MOSFET works as a cascode
device and keeps the output resistance of the circuit high.
The current through this circuit increases and decreases pe-
riodically as a function of input voltage unless the CC load
is connected. The current is determined only by the input
voltage; it is independent of the output voltage, because the
drain voltage of the SET is kept constant by the MOSFET.
When the CC load is connected and the increasing drain
current crosses the load line of Io, the output voltage Vout

switches very sharply from high to low. On the other hand,
when the decreasing drain current crosses the load line, the
output voltage switches from low to high.

We assume discrete logical levels (or logic values) cor-
responding to specific voltage levels as shown in Figs. 1(b)
and (c) for the case of r = 8. The output Vout becomes logi-
cal “1” when the SET is off and Vout becomes “0” when the
SET is on. The periodic waveform of the output is shifted by
half period by applying a constant dc voltage Vctl =

e
Cc

[V]
(logical 1), where Cc is the capacitance of the control gate.
The waveform shift due to the control-gate potential is il-
lustrated in Fig. 1(b) (when Vctl is logical 0) and (c) (when
Vctl is logical 1). As a result, Fig. 1(b) realizes the literal
function x{0,2,4,6}, and (c) realizes x{1,3,5,7}

Figure 2 shows a family of possible logic gates us-
ing SETs for realizing binary logic, MV (Multiple-Valued)

logic and mixed-mode logic circuits. As described above,
the SET periodic literal could be used to discriminate MV
signals (including binary signals as a special case) using a
binary periodic waveform. We can consider two types of
circuit configuration for the SET periodic literal, i.e., CC-
load type and complementary type as illustrated in Fig. 2.
(In the complementary-type configuration, SET A and SET
A’ must be designed to switch in a complementary man-
ner.) For both types, we can shift the phase of periodic out-
put by changing the potential applied to the control gate.
Thus, we have two different transfer characteristics of peri-
odic literals depending on the potential of the control gate
(a = 0 or a = 1). Let S 0 and S 1 denote the set of even
logic values {0, 2, 4, · · ·}(⊆ Lr) and the set of odd logic val-
ues {1, 3, 5, · · ·}(⊆ Lr), respectively. The resulting function
of the periodic literal circuit corresponds to xS 0 when a = 0
and to xS 1 when a = 1. Assuming the use in binary logic
(r = 2), the two parameter settings a = 0 and a = 1 corre-
spond to negative and positive literals, x{0} = x̄ and x{1} = x,
respectively, as shown in Fig. 3(a).

Also, we propose three different two-input logic gates,
i.e., a parallel gate, a series gate and a summing gate, as
shown in Fig. 2. For every two-input logic gate, we could
consider CC-load-type and complementary-type configura-
tions. These two-input gates could accept MV signals. The
equivalent function of the parallel (or series) gate is repre-
sented by an AND (or OR) connection of a pair of peri-
odic literals as shown in Fig. 2. Another interesting prop-
erty of the parallel (or series) gate is that its function could
be programmed by the potential applied to the control gates
a, b(∈ {0, 1}) in a highly flexible manner. As a result, the
function of parallel gate is represented by xS a ∧ yS b and
that of series gate is xS a ∨ yS b . Assuming the use in bi-
nary logic, there are possible four functions for every paral-
lel (or series) gate corresponding to the parameters (a, b) =
(0, 0), (0, 1), (1, 0), (1, 1) as shown in Figs. 3(b) and (c).

On the other hand, the two-input summing gate em-
ploys an unique structure for capacitive voltage addition as
shown in the last column of Fig. 2. The function of the sum-
ming gate can be represented as (x + y)S a . For binary logic
(r = 2), the function can be rewritten as

(x + y)S a =

{
(x + y){0,2} = x ⊕ y if a = 0
(x + y){1} = x ⊕ y if a = 1.

Thus, the summing gate is particularly useful for imple-
menting EXNOR (a = 0) and EXOR (a = 1) operations
as illustrated in Fig. 3(d).

Other useful logic gates are listed in Fig. 4. The invert-
ing adder is used to combine plural binary (or MV) signals
into a single MV signal, where the inputs must have nega-
tive polarity. The SET periodic literal with negative output,
which is also listed in Fig. 4, is used to provide negative in-
put signals for the inverting adder. The voltage divider, on
the other hand, is used to scale the voltage applied to the
SET so as to change the period of square-wave transfer char-
acteristics. The latched quantizer is used as an MV memory
whose output is quantized to have discrete logic levels.
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Fig. 2 SET logic gate family: SET periodic literals and SET two-input gates.

2.3 Simulation Examples of SET Logic Gates

We confirmed the basic operation of the proposed SET logic
gates shown in Fig. 2 by the SPICE simulation. The analyt-
ical device model of the SET reported in [3] is used for the

SPICE simulation. The SET model is based on the steady-
state master equation and takes only the two most-probable
charging states into account. The model is implemented to
SmartSpice [6] as a subcircuit comprising analog behavioral
devices.

Table 1 shows device parameters used for circuit simu-
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lation, where we assume the use of two different power sup-
ply voltages; VDD is for the MV operation and Vdd is for the
binary operation. For the MV operation, we assume four-
valued inputs {GND,Vdd, 2Vdd, 3Vdd(= VDD)} correspond-
ing to four logical values {0, 1, 2, 3}, respectively. The chan-
nel width W = 50 nm of the MOSFET in Table 1 might be
quite small when assuming the present state of technology.
In future, however, such device geometry will become avail-
able as predicted in ITRS roadmap [7]. Also, special device
structures such as FinFET [8] may provide a reasonable way
of fabricating narrow-channel-width MOSFETs. But, of

Fig. 3 Equivalent binary logic functions of SET logic gates.

Fig. 4 SET logic gate family: additional components.

course we need to address many technical problems, includ-
ing problems of process variation, in realizing 50 nm chan-
nel width. Because of the device model constraint, every ter-
minal of SET should be driven by a constant-voltage source
or should be connected to a capacitor whose value is much
larger than the total capacitance Ctotal(= Cg+Cb+Cd+Cs) of
the SET. In most of our simulations, the terminals of SETs
are connected to constant-voltage sources. In the case of
series-connected gates, on the other hand, we attached a
30 aF capacitance at every series connection point, where
30 aF is larger than Ctotal (= 0.9 aF).

Figure 5 shows the simulation results of the SET peri-
odic literals. We simulated both “CC-load type” and “com-
plementary type” circuit configurations with different set-
tings of control gate voltages. In simulations of CC-load-
type gates, we used ideal current sources as constant-current

Table 1 Device parameters for SPICE simulations.

Temperature 100 K

Cg, Cb 0.27 aF
SET Cs,Cd 0.18 aF

Rs,Rd 100 kΩ

L 200 nm
W 50 nm
tox 5 nm

MOSFET Cgdo,Cgso 200 pF/m
Cgdl,Cgsl 50 pF/m

Vth 0.87 V
S 54 mV/dev

VDD 0.9 V
Vdd 0.3 V

Bias & Load Vgg 0.95 V
Io 75–80 nA
CL 0.1 fF
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Fig. 5 SPICE simulation results of SET periodic literals (the CC-load
type and the complementary type).

loads. In practice, the constant-current loads could be im-
plemented by MOSFETs, where we should consider the ef-
fect of channel-length modulation and the output resistance
of the MOSFET CC load. To suppress the effect of channel-
length modulation and to maintain the sufficient level of out-
put resistance, we need to employ MOSFETs whose channel
lengths are 2–3 times larger than the minimum geometry.
This situation may become worse in future as device size
shrinks. Addressing this problem, advanced device struc-
tures, such as reported in [7], should be introduced to im-
prove the MOSFET characteristics. The correct operation is
successfully confirmed for binary input signals (0–200 ns)
and also for four-valued input signals (200–550 ns).

Figures 6 and 7 show the simulated waveforms for the
parallel gate and series gate, respectively. Though the figure
shows only the result of “CC-load type” configuration, we
verified correct operation of both “CC-load type” and “com-
plementary type” configurations for all the possible param-
eters (a, b). Similarly, simulation examples of the summing
gate are shown in Fig. 8. As is observed in these results,
we can conclude that the proposed SET logic gates provide
highly flexible functionality not only for binary input signals
but also for MV input signals. Note that all these gates pro-
duce binary output signals. To produce MV signals, we need

Fig. 6 SPICE simulation results of the SET parallel gate (CC-load type).

to employ the additional components shown in Fig. 4. We
also verified correct operation of these components through
extensive SPICE simulation. Additionally, we designed and
simulated a five-stage ring oscillator consisting of five SET
periodic literal gates. Assuming a 20 aF load for each gate,
the oscillation frequency was 625 MHz in this simulation.

The detailed simulation results of complete applica-
tion circuits (including the additional components) can be
found in our conference papers [5], [8], [9] and the subse-
quent paper [10] submitted in this special issue (the paper
is focused on the simulation methodology of SET logic cir-
cuits of practical size).

On the other hand, main focus of this paper is to pro-
pose a family of basic SET logic gates and to show its func-
tional completeness in synthesizing binary and MV logic
circuits as is discussed the following sections.
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Fig. 7 SPICE simulation results of the SET series gate (CC-load type).

3. Realization of Functions in Binary and Multiple-
Valued (MV) Logic

3.1 Binary Logic Functions

The proposed SET logic gate family is functionally com-
plete in realizing arbitrary binary logic functions. We can
easily confirm this fact from Fig. 3. When (a, b) = (0, 0),
the SET parallel gate performs NOR operation.

3.2 Literal Functions for MV Logic

The SET logic gate family is particularly useful for realizing
the literal functions with periodic transfer characteristics. In
this section, we show that the SET logic gates can realize
arbitrary literal functions xS in principle.

We first consider the realization of delta literal func-
tions xS with |S | = 1, where |S | denotes the number of ele-
ments in the set S . Figure 9 shows a typical structure for a

Fig. 8 SPICE simulation results of the SET summing gate (CC-load
type).

Fig. 9 Realization of the delta literal x{4}.

delta literal function, where the delta literal x{4} in 8-valued
logic system is considered as an example. The voltage di-
viders are used to change the period of SET periodic liter-
als. Then, combining three square-wave literals of different
periods using SET parallel gates (AND gates), we can cre-
ate arbitrary delta-literal functions as shown in Fig. 9. Also,
by taking the OR of delta literal functions with SET series
gates, we have arbitrary literal functions. Figure 10 shows
an example of the literal x{1,4,5,7}.

3.3 MV Logic Functions

Any MV logic functions of a single variable can be realized
by adding the outputs of literal functions as illustrated in
Fig. 11. The corresponding 8-valued single-variable logic



DEGAWA et al.: A SINGLE-ELECTRON-TRANSISTOR LOGIC GATE FAMILY
1833

function f (x) is represented by

f (x) = x{2,4,7} + x{2,4,6} + x{0,2,3,6},

where x, f ∈ L8. Note that the addition is performed by
an inverting adder shown in Fig. 4, which could accept only
negative signals. Hence, the SET periodic literal with neg-
ative output shown in Fig. 4 is used to produce negative bi-
nary signals. This approach can be easily extended to the
realization of arbitrary MV logic functions of n variables.
Figure 12 illustrates a realization of the two-variable func-
tion:

f (x1, x2) = x{2,4,7}1 ∧ x{2,4,6}2 + x{0,2,3}1 ∧ x{1,4,5}2 ,

as an example (x1, x2, f ∈ L8). In general, r-valued logic
function of n variables can be expressed in the form:

f (x1, x2, · · · , xn) =
∑

i

xS i1

1 ∧ xS i2

2 ∧ · · · ∧ xS in
n ,

Fig. 10 Realization of the literal x{1,4,5,7}.

Fig. 11 Realization of an MV logic function of a single variable.

Fig. 12 Realization of an MV logic function of two variables.

where x1, x2, · · · , xn, f ∈ Lr, S i j ⊆ Lr and
∑

denotes the
linear summation of the product terms.

As discussed in this section, the proposed SET logic
gate family can be used to implement arbitrary binary logic
circuits and MV logic circuits. Listed below are important
characteristics of the SET logic gates:

• The use of SETs allows extremely simple realization of
literal functions with periodic transfer characteristics,
which may be useful for designing arithmetic circuits
and analog-digital interface circuits.
• The SET can accept MV signals directly to produce

binary output. Also, highly compact realization of
MV memory is available using the latched quantizer
in Fig. 4 [5]. These properties are particularly useful
for implementing binary-MV mixed-mode logic cir-
cuits and logic-in-memory circuits [11].

4. Design of Parallel Counters for Arithmetic
Datapaths

This section describes the SET-based design of parallel
counter circuits for carry-propagation-free arithmetic. We
give a simple design example of binary-MV mixed-mode
logic circuits.

As described in Ref. [12], most of the adders including
redundant-number adders could be represented as general-
ized counters in the framework of Counter Tree Diagrams
(CTDs). Thus, such a generalized counter is considered to
be one of the most important components in arithmetic cir-
cuits. Figure 13 shows a simple example of a binary n-m
counter, where n = 2m − 1 in general. The function of the
n-m parallel counter can be represented as

20y0+21y1+· · ·+2m−1ym−1= x0+x1+· · ·+xn−1.

The n-m parallel counter counts the number of 1s in the in-
put signals as follows: (i) add the n binary signals to an
(n+ 1)-valued signal [0 : n], and (ii) decompose the (n+ 1)-
valued signal to m binary signals as in the case of analog-to-
digital converters.

Figure 14 shows a SET-based implementation of a 3–
2 parallel counter. For the first-stage addition, an inverting
adder is used, and hence we adopt negative logic for the in-
put/output signals to simplify the circuit configuration. The
four-valued signal thus generated is quantized by the latched
quantizer, and is decomposed into binary signals by using a
pair of periodic literals. Thus, the “counting” operation is

Fig. 13 Binary n-m parallel counter.
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directly implemented by a pair of periodic literals without
additional components.

The idea of using the periodic transfer characteristics of
SETs for the “counting” operation can be naturally extended
to higher levels of quantization. Figure 15 illustrates an ex-
ample of a 7–3 parallel counter, where three periodic literals
are employed for converting the 8-valued signal to binary
signals. Compared with the ordinary binary implementa-
tion, the circuit exhibits extremely simple structure. The
detailed circuit design is described in the subsequent paper
[10] submitted to this special issue. Our initial observation
shows that the SET-based 7–3 counter can be constructed
with only 1/14 of devices, and can operate at a moderate
speed with 1/100 of power consumption, compared with the
conventional CMOS logic implementation.

The multiple-operand parallel counters thus designed

Fig. 14 Realization of the 3–2 parallel counter.

Fig. 15 Realization of the 7–3 parallel counter.

are useful for implementing various arithmetic circuits that
require multiple-operand addition. For example, Fig. 16
shows the overall architecture of a 32×32-bit pipelined mul-
tiplier using parallel counters. The use of 7–3 parallel coun-
ters makes possible the reduction in the number of counter
stages by 33% and the number of counters by 64%, com-
pared with 3–2 counter-based design.

The above mentioned design principle could be applied
to other designs of various parallel adders including the
adders in redundant number systems and high-radix num-
ber systems. For example, Fig. 17 shows the structure of a
radix-2 Positive Digit (PD) adder [13] using 3-valued dig-
its. The circuit configuration is similar to those of parallel
counters. Our initial observation in these examples shows
that the proposed SET logic gate family is useful for design-
ing binary logic, MV logic and mixed-mode logic circuits.

5. Conclusion and Future Prospects

In this paper, we proposed basic SET logic gates useful for

Fig. 16 32 × 32-bit pipelined multiplier using 7–3 parallel counters.

Fig. 17 Realization of the radix-2 PD adder.
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designing binary logic, MV logic and mixed-mode logic cir-
cuits. The proposed SET logic gate family seems useful
in many applications, where low-power area-efficient cir-
cuit implementation of mixed-signal interface is essential.
Such applications may include logic-in-memory circuits,
functional memory systems, Field-Programmable Gate Ar-
rays (FPGAs), computational sensors with on-chip signal
processing capability (such as computational image sensors
and intelligent chemical/biological sensors), advanced smart
dust, signal processors for mobile devices, etc.
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